PgBouncer and a Bit
of Queueing Theory

Peter Eisentraut

ondQuadrant T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
@petereisentraut

http://peter.eisentraut.org/
http://2ndquadrant.com/
mailto:peter.eisentraut@2ndquadrant.com
http://twitter.com/petereisentraut

client

client

client

client

client

client

client

client

client

client

client

DB

max connections = 10000

e RAM
e |/O
e CPUs

How many then?

And what to do with the rest?

How many then?

https://wiki.postgresqgl.org/wiki/Number_Of_Database_Connections
(ca. 2012):

((core count * 2) + effective spindle count)

https://wiki.postgresql.org/wiki/Number_Of_Database_Connections

max connections vs.
connection limit

ALTER ROLE ... CONNECTION LIMIT xXxX;

Some benchmarking

server: AWS EC2 m5bd.2xlarge (8 core, 32 GiB, 300 GB)
pgbench: same

database fits in RAM: pgbench -i -s 1024 =17 GB

pgbench -T 60 -j32 -c32

latency average = 2.655 ms

tps = 12080.052280 (including connections establishing)
tps = 12083.253808 (excluding connections establishing)

Some more benchmarking

server: AWS EC2 m5bd.2xlarge (8 core, 32 GiB, 300 GB)
pgbench: same

database exceeds RAM: pgbench -i -s 8192 =136 GB

pgbench -T 60 -j32 -c48

latency average = 4.822 ms

tps = 9953.933322 (including connections establishing)
tps = 9956.487118 (excluding connections establishing)

What to do with the rest?

client

client

client

client

client

client

client

client

client

client

client

PgBouncer

PgBouncer configuration

[databases]
myapp = host=elsewhere port=5432 dbname=myapp

[pgbouncer]

;listen port = 6432
;pool mode = session
default pool size = 32
max client conn = 10000

About pool modes

e pool mode = session
e pool mode = transaction
e pool mode = statement

Deterministic queueing ex.

pool size = 1

transaction time = 10 ms = 100 tps

arrival rate = every 25 ms :-)
arrival rate = every 10 ms :-/

arrival rate = every 8 ms :-(

Deterministic queueing ex.

pool size = 10

transaction time = 10 ms = 100 tps

arrival rate = every 2.5 ms :-)
arrival rate = every 1.0 ms :-/

arrival rate = every 0.8 ms :-(

Queueing nodes

T

Waiting Service
area node

A: arrival rate
(. departure rate

Kendall’s notation

A/S/c

A = arrival process
S = service time distribution
Cc = number of servers

Kendall’s notation examples

D/D/1
D/D/k
M/D/
M/M/1
M/M/k
M/G/1

Little’s law
L=\W

L: average number of jobs in system (load)
A: average arrival rate
W : average time spent in system

M/M/1 queue

arrival rate A
service rate u
server utilization p = A/

must: p<1

m = (1-p)p'
mo = (1 —p)
m = (1—-p)p

avg. nr.jobs L = p/(1 — p)

M/M/1 queue example

arrival rate A = 1/25ms = 40/s
service rate u = 1/10ms = 100/s

server utilization p = A/u = 40/100 = 0.4

7T0:(1—p):0.6
m=(1—p)p=0.24

avg. nr. jobs L = p/(1 — p) = 0.67

M/M/1 queue response time

W=L/A=...=1/(1u—)\

Example:

W = 1/(100 — 40) = 0.0167 s

M/M/c queue

arrival rate A
service rate u

server utilization p = A/(cu)

must: p<1

M/M/c queue analysis

probability of having to wait:
P = ErlangC(\/u, c)

avg. nr. jobs in system:
L = r”p ErlangC ()\/,u, c) +cp

response time:

ErlangC(A/u,c)

W = =

1
T

Erlang C formula

def ErlangC(A, N):
L = (A**N / factorial(N)) * (N / (N - A))
sum_ = 0
for i in range(N):
sum += (A**i) / factorial(i)
return (L / (sum_ + L))

M/M/c queue examples

A =1/25ms = 40/s
4= 1/10ms = 100/s

c=1

P=04 L=067 W=0.0167s

c=2
P=0.067 L=0.41 W =0.0104s

c=3
P=0.008 L=040 W =0.010s

A final example

10000 tps
pool_size = 48

SO

c =48

p© = 10000/48 = 208

A = 1000 P=0 L =48 W =0.0048
A = 2000 P=~0 L=9.6 W =0.0048
A = 4000 P=0 L=19.2 W = 0.0048
A = 6000 P =0.0007 L =288 W =0.0048
A = 8000 P =0.09 L =388 W =0.0049
A =9000 P =0.37 L=46.7 W =0.0051

Summary

arrival rate (measure, calculate)
service rate (measure, benchmark)
server count/pool size (benchmark)
load (measure)

response time (measure, calculate)
waiting probability

Little’s law

M/M/c queue

Erlang-C

