
PgBouncer and a Bit
of Queueing Theory

Peter Eisentraut

peter.eisentraut@2ndquadrant.com
@petereisentraut

http://peter.eisentraut.org/
http://2ndquadrant.com/
mailto:peter.eisentraut@2ndquadrant.com
http://twitter.com/petereisentraut

client

DB

client client client client client client client client client client

max_connections = 10000

max_connections = 10000

RAM
I/O
CPUs
…

How many then?

And what to do with the rest?

How many then?
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections
(ca. 2012):

((core_count * 2) + effective_spindle_count)

https://wiki.postgresql.org/wiki/Number_Of_Database_Connections

max_connections vs.
connection limit
ALTER ROLE ... CONNECTION LIMIT xxx;

Some benchmarking
server: AWS EC2 m5d.2xlarge (8 core, 32 GiB, 300 GB)
pgbench: same

database fits in RAM: pgbench -i -s 1024 = 17 GB

pgbench -T 60 -j32 -c32
latency average = 2.655 ms
tps = 12080.052280 (including connections establishing)
tps = 12083.253808 (excluding connections establishing)

Some more benchmarking
server: AWS EC2 m5d.2xlarge (8 core, 32 GiB, 300 GB)
pgbench: same

database exceeds RAM: pgbench -i -s 8192 = 136 GB

pgbench -T 60 -j32 -c48
latency average = 4.822 ms
tps = 9953.933322 (including connections establishing)
tps = 9956.487118 (excluding connections establishing)

What to do with the rest?
client

PgBouncer

DB

client client client client client client client client client client

PgBouncer configuration
[databases]
myapp = host=elsewhere port=5432 dbname=myapp

[pgbouncer]
;listen_port = 6432
;pool_mode = session
default_pool_size = 32
max_client_conn = 10000

About pool modes
pool_mode = session
pool_mode = transaction
pool_mode = statement

Deterministic queueing ex.
pool size = 1

transaction time = 10 ms = 100 tps

arrival rate = every 25 ms :-)

arrival rate = every 10 ms :-/

arrival rate = every 8 ms :-(

Deterministic queueing ex.
pool size = 10

transaction time = 10 ms = 100 tps

arrival rate = every 2.5 ms :-)

arrival rate = every 1.0 ms :-/

arrival rate = every 0.8 ms :-(

Queueing nodes

μλ
Waiting
area

Service
node

λ: arrival rate
μ: departure rate

Kendall’s notation
A/S/c

A = arrival process
S = service time distribution
c = number of servers

Kendall’s notation examples
D/D/1
D/D/k
M/D/1
M/M/1
M/M/k
M/G/1
…

Little’s law
L = λW

L: average number of jobs in system (load)
λ: average arrival rate
W : average time spent in system

M/M/1 queue
arrival rate λ
service rate μ
server utilization ρ = λ/μ

must: ρ<1

πi = (1 − ρ)ρi

π0 = (1 − ρ)
π1 = (1 − ρ)ρ

avg. nr. jobs L = ρ/(1 − ρ)

M/M/1 queue example
arrival rate λ = 1/25ms = 40/s
service rate μ = 1/10ms = 100/s

server utilization ρ = λ/μ = 40/100 = 0.4

π0 = (1 − ρ) = 0.6
π1 = (1 − ρ)ρ = 0.24

avg. nr. jobs L = ρ/(1 − ρ) = 0.67

M/M/1 queue response time
W = L/λ = … = 1/(μ − λ)

Example:

W = 1/(100 − 40) = 0.0167 s

M/M/c queue
arrival rate λ
service rate μ

server utilization ρ = λ/(cμ)

must: ρ<1

M/M/c queue analysis
probability of having to wait:

P = ErlangC(λ/μ, c)

avg. nr. jobs in system:

L =
ρ

1−ρ ErlangC(λ/μ, c) + cρ

response time:

W =
ErlangC(λ/μ,c)

cμ−λ + 1
μ

Erlang C formula
def ErlangC(A, N):
 L = (A**N / factorial(N)) * (N / (N - A))
 sum_ = 0
 for i in range(N):
 sum_ += (A**i) / factorial(i)
 return (L / (sum_ + L))

M/M/c queue examples
λ = 1/25ms = 40/s
μ = 1/10ms = 100/s

c = 1

P = 0.4 L = 0.67 W = 0.0167 s

c = 2

P = 0.067 L = 0.41 W = 0.0104 s

c = 3

P = 0.008 L = 0.40 W = 0.010 s

A final example
10000 tps
pool_size = 48

so

c = 48
μ = 10000/48 = 208

λ = 1000 P ≈ 0 L = 4.8 W = 0.0048
λ = 2000 P ≈ 0 L = 9.6 W = 0.0048
λ = 4000 P ≈ 0 L = 19.2 W = 0.0048
λ = 6000 P = 0.0007 L = 28.8 W = 0.0048
λ = 8000 P = 0.09 L = 38.8 W = 0.0049
λ = 9000 P = 0.37 L = 46.7 W = 0.0051

Summary
arrival rate (measure, calculate)
service rate (measure, benchmark)
server count/pool size (benchmark)
load (measure)
response time (measure, calculate)
waiting probability
Little’s law
M/M/c queue
Erlang-C

